

Фоновые характеристики материалов для ультра низкофоновых ОЧГ детекторов

А.Р. Розите, Р.М. Нургалеев, А.Д.Соколов,

Baltic Scientific Instruments, Рига, Латвия

Гамма спектрометры на основе ОЧГ детекторов

- наиболее прецизионный инструмент для регистрации ядерных излучений в ядерной физике и физике элементарных частиц

$$FoM = \frac{E(\varepsilon)}{R(\varepsilon)} \times \sqrt{\frac{t}{B(\varepsilon)}}$$

где Е - эффективность регистрации детектора;

R - энергетическое разрешение;

В – уровень фона;

t - время измерения.

Низкофоновые и ультра низкофоновые спектрометры на основе ОЧГ детекторов

Задачи:

- 1. регистрация двойного бета распада,
- 2. поиск темной материи,
- 3. мониторинг радиоактивных материалов в условиях подземных низкофоновых лабораторий.

Снижение внешнего фона –

Пассивная защита Активная защита Подземные лаборатории

Снижение собственного инструментального фона ОЧГ детекторов –

только специальные материалы и специальный дизайн !

Собственный фон кристалла ОЧГ детекторов:

- наличие в кристалле естественных радионуклидов ²³⁸U, ²³²Th и ⁴⁰K;
- наличие в кристалле техногенных радионуклидов ¹³⁷Cs, ⁶⁰Co;
- выделение продуктов распада ²³⁸U и ²³²Th радонов и торонов;
- взаимодействие космического излучения с веществом кристалла детектора - ⁷Be, ⁵⁴Mn, ⁶⁰Co, ⁶⁸Ge;
- осаждение при сборке на кристалл пыли, содержащей практически все радионуклиды естественного и искуственного происхождения.

Естественные и техногенные радионуклиды в ОЧГ кристалле

- Зонная очистка
- Радионуклиды присутствуют в кристаллах в значительных для ультра низкофоновых измерений количествах

Радон. Транспортировка ОЧГ кристалла

Радон. Межоперационное хранение ОЧГ кристаллов

Бокс с азотной атмосферой

Защита ОЧГ кристаллов от космического излучения

BALTIC SCIENTIFIC INSTRUMENTS

Наземная транспортировка

Хранение в боксе из материалов, эффективно поглощающих нейтроны

Хранилище BSI - (Cd, H₂O) : достигнуто снижение потока нейтронов в 6-7 раз

Сборка детектора

Перчаточный бокс с атмосферой сухого азота для:

- уменьшения концентрации радона;
- уменьшения концентрации пыли.

Основные источники инструментального фона криостата

- элементы криостата (крышка, держатель детектора, хладопровод) выполнены из материалов с низкой радиоактивностью (электролитическая медь, особо чистый алюминий).
- 2. элементы криостата, обладающие относительно высокой собственной радиоактивностью (неохлаждаемая часть предусилителя, сорбент), удалены за пределы измерительной камеры.
- 3. Охлаждаемая часть предусилителя выполнена на фторопластовом основании, экранирована от ОЧГ детектора.
- 4. Припои только безсвинцовые.
- 5. Держатель хладопровода из стеклотекстолита заменен на поликарбонатный.

Собственный фон материалов в криостате:

- наличие естественных радионуклидов ²³⁸U, ²³²Th и ⁴⁰K;
- наличие техногенных радионуклидов ¹³⁷Cs, ⁶⁰Co;
- выделение продуктов распада ²³⁸U и ²³²Th радонов и торонов;
- взаимодействие космического излучения с материалами
 ⁷Be, ⁵⁴Mn, ⁶⁰Co, ⁶⁸Ge;
- осаждение при сборке на материалы криостата пыли, содержащей практически все радионуклиды естественного и искуственного происхождения.

Измерение радиационной чистоты материалов в подземной лаборатории с помощью ОЧГ детекторов

- 1. Нержавеющая сталь (винты)
- 2. Детали хладопровода (сапфиры)
- 3. Уплотнительные кольца
- 4. Входной каскад предусилителя (ПУ)

Определение активностей радионуклидов на уровне мБк/кг

Радионуклид	Сапфиры	Входной каскад ПУ на	Входной каскад предусилителя	
		стандартной	на подложке из	
		подложке	фторопласта	
	мБк/кг	мБк/каскад	мБк/каскад	
²³⁸ U	< 21	19±5	< 2	
²³⁵ U	< 3.3	n.a.	< 0.8	
²²⁶ Ra	< 6.5	16±2	0.28±0.25	
²²⁸ Ra	< 10	25±1	< 0.9	
²²⁸ Th	< 4	26±1	< 0.8	
²¹⁰ Pb	< 25	68±37	24±8	
⁴⁰ K	< 30	5±3	< 5.6	
⁶⁰ Co	< 3.3	n.a.	n.a.	
¹³⁷ Cs	< 3	n.a.	< 0.23	
⁷ Be	n.a.*	n.a.	< 2	
⁵⁴ Mn	n.a.	n.a.	< 0.8	
n.a. – пик не зарегестрирован, предел обнаружения не рассчитан				

Сравнение спектров фона 50% ОЧГ детектора в стандартной закрытой защите (верхний) и в открытой защите

Спектр фона 50% ОЧГ детектора в стандартной защите

Толщина свинца 10 см

Толщина медной вставки 9 мм

Время измерения 64 400 секунд

Интегральный фон 239 800 импульсов

R=3,7 имп/сек

Фрагмент спектра 50 – 400 кэВ

Количественная оценка фоновых

характеристик

			Плошаль		Скорость
Радионуклид	Центроида	Энергия, кэВ	пика	FWHM, эB	имп/час
238U	335.583	63.066	251	0.769	14
Pb Ka	396.634	74.793	225	0.784	13
238U	488.548	92.448	655	0.953	37
235U	973.934	185.684	487	0.937	27
²³² Th	1249.401	238.601	1460	0.937	82
Аннигиляция	2667.865	511.116	971	1.157	54
²³² Th	3043.063	583.208	392	1.198	22
²²⁶ Ra	3178.924	609.313	54	1.239	3
⁴⁰ K	7608.609	1460.738	232	1.811	13
²³² Th	13610.955	2615.255	221	2.518	12

Спектр фона 50% ОЧГ детектора в стандартной защите, но с медной вставкой толщиной 0,5 мм

Толщина свинца 10 см

Толщина медной вставки 0,5 мм

Время измерения 65 400 секунд

Интегральный фон 306 800 импульсов

Фрагмент низкоэнергетической части спектра

Количественная оценка фоновых характеристик

		Энергия,		FWHM,	Скорость счета,
Радионуклид	Центроида	кэВ	Площадь пика	эВ	имп/час
²¹⁰ Pb	280.672	46.537	319	0.655	18
²³⁸ U	378.296	63.228	561	0.764	31
Pb Ka	446.063	74.815	410	0.71	23
Pb Kb	518.646	87.225	270	0.846	15
U Ka	549.742	92.542	1288	0.854	71
235 U	849.995	143.882	153	0.779	8
235U	1094.612	185.712	850	0.855	47
²³² Th	1404.266	238.668	1175	0.905	65
²²⁶ Ra	2066.23	351.887	165	1.006	9
Аннигиляция	2994.781	510.734	1170	1.121	64
²³² Th	3416.795	582.941	361	1.164	20
²²⁶ Ra	3570.089	609.171	232	1.186	13
²³² Th	5034.424	859.788	34	1.48	2
²³² Th	5332.214	910.766	77	1.524	4
²³² Th	5670.463	968.674	59	1.573	3
²³⁴ Pa-M	5855.883	1000.42	74	1.599	4
²²⁶ Ra	6553.349	1119.847	40	1.697	2
⁴⁰ K	8540.033	1460.144	263	1.639	15
²³² Th	15271.954	2614.529	213	2.721	12

Таблица сравнения 2-х детекторов (50%) в свинцовой защите

		1-й детектор в защите (10 см Pb + 9 мм Cu)	2-й детектор в защите (10 см Pb + 0.5 мм Cu)
	Энергия,	скорость счета,	скорость счета,
Радионуклид	кэВ	имп/час	имп/час
²¹⁰ Pb	46,5	-	18
238U	63,2	14	31
Pb Ka1	74,8	13	23
Pb Kb	87,2	< 2	15
U Ka	92,5	37	71
235 U	185,7	27	47
²³² Th	238,7	82	56
²²⁶ Ra	351,9	-	9

Фрагмент спектра фона 160% ОЧГ детектора в ультра низкофоновом АІ криостате в свинцовой защите (5 см)

- 1. Изготовление ультра низкофоновых ОЧГ детекторов требует применения специальных материалов криостата и специальной технологии производства детекторов.
- 2. Кристаллы детектора и элементы криостата транспортируются наземным транспортом в боксах и хранятся в специальном хранилище, стенки которого эффективно поглащают нейтроны.
- 3. Основными материалами криостата являются особо чистый алюминий и электролитическая медь, поверхности этих материалов требуют очистки и пассивации.
- 4. Элементы криостата, обладающие относительно высоким уровнем собственной радиоактивности, удаляются за пределы защиты.
- 5. Определенные элементы криостата проходят проверку радиационной чистоты в подземных лабораториях с использованием ОЧГ детекторов.