

Фоновые характеристики материалов для ультра низкофоновых ОЧГ детекторов

А.Р. Розите, Р.М. Нургалеев, А.Д.Соколов,

Baltic Scientific Instruments, Рига, Латвия

Гамма спектрометры на основе ОЧГ детекторов

- наиболее прецизионный инструмент для регистрации ядерных излучений в ядерной физике и физике элементарных частиц

$$FoM = \frac{E(\varepsilon)}{R(\varepsilon)} \times \sqrt{\frac{t}{B(\varepsilon)}}$$

где Е - эффективность регистрации детектора;

R - энергетическое разрешение;

В – уровень фона;

t - время измерения.

Низкофоновые и ультра низкофоновые спектрометры на основе ОЧГ детекторов

Задачи:

- 1. регистрация двойного бета распада,
- 2. поиск темной материи,
- 3. мониторинг радиоактивных материалов в условиях подземных низкофоновых лабораторий.

Снижение внешнего фона –

Пассивная защита Активная защита Подземные лаборатории

Снижение собственного инструментального фона ОЧГ детекторов –

только специальные материалы и специальный дизайн!

Собственный фон кристалла ОЧГ детекторов:

- наличие в кристалле естественных радионуклидов ²³⁸U, ²³²Th и ⁴⁰K;
- наличие в кристалле техногенных радионуклидов ¹³⁷Cs, ⁶⁰Co;
- выделение продуктов распада ²³⁸U и ²³²Th радонов и торонов;
- взаимодействие космического излучения с веществом кристалла детектора ⁷Be, ⁵⁴Mn, ⁶⁰Co, ⁶⁸Ge;
- осаждение при сборке на кристалл пыли, содержащей практически все радионуклиды естественного и искуственного происхождения.

Естественные и техногенные радионуклиды в ОЧГ кристалле

- Зонная очистка
- Радионуклиды присутствуют в кристаллах в значительных для ультра низкофоновых измерений количествах

Радон. Транспортировка ОЧГ кристалла

Радон. Межоперационное хранение ОЧГ кристаллов

Бокс с азотной атмосферой

Защита ОЧГ кристаллов от космического излучения

Наземная транспортировка

Хранение в боксе из материалов, эффективно поглощающих нейтроны

Хранилище BSI - (Cd, H₂O) : достигнуто снижение потока нейтронов в 6-7 раз

Сборка детектора

Перчаточный бокс с атмосферой сухого азота для:

- уменьшения концентрации радона;
- уменьшения концентрации пыли.

Основные источники инструментального фона криостата

- 1. элементы криостата (крышка, держатель детектора, хладопровод) выполнены из материалов с низкой радиоактивностью (электролитическая медь, особо чистый алюминий).
- 2. элементы криостата, обладающие относительно высокой собственной радиоактивностью (неохлаждаемая часть предусилителя, сорбент), удалены за пределы измерительной камеры.
- 3. Охлаждаемая часть предусилителя выполнена на фторопластовом основании, экранирована от ОЧГ детектора.
- 4. Припои только безсвинцовые.
- 5. Держатель хладопровода из стеклотекстолита заменен на поликарбонатный.

Собственный фон материалов в криостате:

- наличие естественных радионуклидов ²³⁸U, ²³²Th и ⁴⁰K;
- наличие техногенных радионуклидов ¹³⁷Cs, ⁶⁰Co;
- выделение продуктов распада ²³⁸U и ²³²Th радонов и торонов;
- взаимодействие космического излучения с материалами ⁷Be, ⁵⁴Mn, ⁶⁰Co, ⁶⁸Ge;
- осаждение при сборке на материалы криостата пыли, содержащей практически все радионуклиды естественного и искуственного происхождения.

Измерение радиационной чистоты материалов в подземной лаборатории с помощью ОЧГ детекторов

Объекты тестирования:

- 1. Нержавеющая сталь (винты)
- 2. Детали хладопровода (сапфиры)
- 3. Уплотнительные кольца
- 4. Входной каскад предусилителя (ПУ)

Определение активностей радионуклидов на уровне мБк/кг

Радионуклид	Сапфиры	Входной каскад	Входной каскад	
		ПУ на	предусилителя	
		стандартной	на подложке из	
		подложке	фторопласта	
	мБк/кг	мБк/каскад	мБк/каскад	
^{238}U	< 21	19±5	< 2	
²³⁵ U	< 3.3	n.a.	< 0.8	
²²⁶ Ra	< 6.5	16±2	0.28±0.25	
²²⁸ Ra	< 10	25±1	< 0.9	
²²⁸ Th	< 4	26±1	< 0.8	
²¹⁰ Pb	< 25	68±37	24±8	
⁴⁰ K	< 30	5±3	< 5.6	
^{6O} Co	< 3.3	n.a.	n.a.	
¹³⁷ Cs	< 3	n.a.	< 0.23	
⁷ Be	n.a.*	n.a.	< 2	
⁵⁴ Mn	n.a.	n.a.	< 0.8	
п.а. – пик не зарегес	трирован, предел	обнаружения не рассчи	ган	

Сравнение спектров фона 50% ОЧГ детектора в стандартной закрытой защите (верхний) и в открытой защите

Спектр фона 50% ОЧГ детектора в стандартной защите

Толщина свинца 10 см

Толщина медной вставки 9 мм

Время измерения 64 400 секунд

Интегральный фон 239 800 импульсов

R=3,7 имп/сек

Фрагмент спектра 50 – 400 кэВ

Количественная оценка фоновых характеристик

			П-ошо-		Скорость
Рапионуулил	Центроида	Энергия, кэВ	Площадь пика	FWHM, эВ	счета, имп/час
Радионуклид		эпергия, кэв			MINITI/ 4aC
238U	335.583	63.066	251	0.769	14
Pb Ka	396.634	74.793	225	0.784	13
238U	488.548	92.448	655	0.953	37
235U	973.934	185.684	487	0.937	27
²³² Th	1249.401	238.601	1460	0.937	82
Аннигиляция	2667.865	511.116	971	1.157	54
²³² Th	3043.063	583.208	392	1.198	22
²²⁶ Ra	3178.924	609.313	54	1.239	3
⁴⁰ K	7608.609	1460.738	232	1.811	13
²³² Th	13610.955	2615.255	221	2.518	12

Спектр фона 50% ОЧГ детектора в стандартной защите, но с медной вставкой толщиной 0,5 мм

Толщина свинца 10 см

Толщина медной вставки 0,5 мм

Время измерения 65 400 секунд

Интегральный фон 306 800 импульсов

R=4,7 имп/сек

Фрагмент низкоэнергетической части спектра

Радионуклид	Центроида	Энергия, кэВ	Площадь пика	FWHM, эВ	Скорость счета, имп/час
²¹⁰ Pb	280.672	46.537	319	0.655	18
238U	378.296	63.228	561	0.764	31
Pb Ka	446.063	74.815	410	0.71	23
Pb Kb	518.646	87.225	270	0.846	15
U Ka	549.742	92.542	1288	0.854	71
235U	849.995	143.882	153	0.779	8
235 U	1094.612	185.712	850	0.855	47
²³² Th	1404.266	238.668	1175	0.905	65
²²⁶ Ra	2066.23	351.887	165	1.006	9
Аннигиляция	2994.781	510.734	1170	1.121	64
²³² Th	3416.795	582.941	361	1.164	20
²²⁶ Ra	3570.089	609.171	232	1.186	13
²³² Th	5034.424	859.788	34	1.48	2
²³² Th	5332.214	910.766	77	1.524	4
²³² Th	5670.463	968.674	59	1.573	3
²³⁴ Pa-M	5855.883	1000.42	74	1.599	4
²²⁶ Ra	6553.349	1119.847	40	1.697	2
⁴⁰ K	8540.033	1460.144	263	1.639	15
²³² Th	15271.954	2614.529	213	2.721	12

Таблица сравнения 2-х детекторов (50%) в свинцовой защите

Радионуклид	Энергия, кэВ	1-й детектор в защите (10 см Pb + 9 мм Cu) скорость счета, имп/час	2-й детектор в защите (10 см Pb + 0.5 мм Cu) скорость счета, имп/час
²¹⁰ Pb	46,5	-	18
238U	63,2	14	31
Pb Ka1	74,8	13	23
Pb Kb	87,2	< 2	15
U Ka	92,5	37	71
235U	185,7	27	47
²³² Th	238,7	82	56
²²⁶ Ra	351,9	-	9

Фрагмент спектра фона 160% ОЧГ детектора в ультра низкофоновом AI криостате в свинцовой защите (5 см)

Выводы

- 1. Изготовление ультра низкофоновых ОЧГ детекторов требует применения специальных материалов криостата и специальной технологии производства детекторов.
- 2. Кристаллы детектора и элементы криостата транспортируются наземным транспортом в боксах и хранятся в специальном хранилище, стенки которого эффективно поглащают нейтроны.
- 3. Основными материалами криостата являются особо чистый алюминий и электролитическая медь, поверхности этих материалов требуют очистки и пассивации.
- 4. Элементы криостата, обладающие относительно высоким уровнем собственной радиоактивности, удаляются за пределы защиты.
- 5. Определенные элементы криостата проходят проверку радиационной чистоты в подземных лабораториях с использованием ОЧГ детекторов.